Parabasal field decomposition and its application to non-paraxial field propagation
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The propagation of harmonic fields through homogeneous media is an essen-
tial simulation technique in optical modeling and design. For non-paraxial fields
common propagation techniques suffer from high numerical effort. We present a
parabasal field decomposition technique which reduces the computational effort
of free-space propagation by analytical handling of linear phase factors.

1 Introduction

Nowadays field tracing enables optical modeling and
design taking the wave nature of light into consider-
ation [1]. This approach provides the tracing of elec-
tromagnetic fields through optical systems. An es-
sential part of this simulation technique is the propa-
gation of harmonic fields through homogeneous me-
dia. For paraxial fields the combination of Fresnel
integral and the Spectrum of Plane Waves (SPW)
integral solves the problem. For non-paraxial fields
the Fresnel integral cannot be applied and SPW of-
ten suffers from a too high numerical effort [2]. In
some situations the far field integral can be used in-
stead, but a general solution of the problem is not
known. In the following we will present a rigorous
fast fourier transformation (FFT) based propagation
operator using a combination of a parabasal decom-
position technique (PDT) and a semi-analytical SPW
propagation operator.

2 Fundamentals of parabasal fields

In case of non-lossy dielectrics, a parabasal field
possesses a low divergence and propagates along
an arbitrary base defined by the central spatial fre-
quency vector

ko = (Ko, koy) T = (502, S0y) " (1)

with the wavenumber in the homogeneous medium
k = kon. In general a parabasal harmonic field V;(p)
given in a plane coordinate system p can be written
as

Vi(p) = V{(p)eloP (2)
which is meaning that it is always possible to split a
parabasal harmonic field into a residual field V/(p)
and a linear phase term. For a given parabasal field
Ve(p) we get the corresponding residual field using
the shift theorem of the Fourier transformation

Ve(p) = 7' [Au(k)]. (3)
Ay(k) = Aj(k — ko) (4)
Vi(p) = 7 [Ay(K)]. (5)

3 Semi-analytical SPW propagation operator

In the previous section it was shown that a parabasal
field is located around a certain spatial frequency
Ko. Using this property we can expand k., around
Ko by a Taylor series

=%+ k+7(k —Ko) (6)

where all higher order terms are included in v(k —
ko). Plugging Eq. (6) into the rigorous SPW propa-
gation operator [3]

Ve(p') = 7~ HAu(r)e™=] (7)

and applying the shift theorem of the Fourier trans-
formation leads to

Ve(p',2) = Vi(p" + 271, z)e(”(’z)e(i(’yl'“O)Z)e(ip/"'iO)

8)
with the propagated shifted residual field

V/(p',2) = FA(k)e" ) (9)

where the initial parabasal field is written in the
seperated form A)(«) of Eq. (4).

4 Parabasal decomposition technique (PDT)

In principle the semi-analytical SPW operator can
be applied to general non-parabasal harmonic fields
because of the rigorous treatment of higher or-
der phase terms in the Taylor expansion of Eq.
(6). However for non-parabasal fields the sam-
pling effort for the higher order phase terms in
Eqg. (9) will increase exorbitantly, resulting in a
rapid increase of the numerical effort. To over-
come this problem the combination of a parabasal
field decomposition technique (PDT) with the semi-
analytical SPW operator is used, like shown in
Fig. 1.This enables the rigorous propagation of non-
paraxial fields with reduced computational effort.
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Fig. 1 Flowchart for the efficient propagation of non-
paraxial fields using a combination of a parabsal decom-
position technique (PDT) and the semi-analytical SPW op-
erator.

From the physical point of view all fields
can be decomposed into parabasal fields in
the spatial frequency domain (like shown in
Fig. 2) due to the definition of a parabasal
field in the spatial frequency domain.
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Fig. 2 Decomposition of a first order Laguerre Gaussian
beam into 2 x 2 parabasal subfields in the spatial frequency
domain.
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However this is not always convenient from a numer-
ical point of view. It is useful to distinguish between
two basic cases of non-paraxial fields:

1. The field is very divergent because of small
features in the field function but it can be sam-
pled without problems in the space domain. In
this case the FFT algorithm can transform the
field into the spatial frequency domain, where
the PDT can be applied. A Gaussian beam
with small waist or a strongly scattered field
are examples of such fields.

2. The field possesses a smooth but strong
phase function, which does not allow its sam-
pling in space domain. Here a FFT algorithm
can not be applied, meaning that the spectrum
in the spatial frequency domain is not acces-
sible. In this case the PDT must be performed
in the space domain. Such fields, e.g. a spher-
ical or cylindrical wave usually are given in an
analytical form.

5 Example

As an example a non-paraxial convergent spher-
ical wave with a spherical wave radius of R =
—4 mm is propagated by z = 3.8 mm, mean-
ing that the target plane is slightly defocused.

The diameter of the z-direction linearly polarized
field is 1.28 mm at an wavelength of 532 nm.
The initial field is decomposed in 20 x 20 sub-
fields in space domain to get parabasal sub-
fields with a sufficiently small divergence. Fig. 3
shows the residual phase of a single parabasal
subfield after extracting the local linear phase.
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Fig. 3 Parabasal field decomposition of a spherical wave
in space domain.
After applying the the semi-analytical SPW operator
on each parabasal subfield and superimposing all
propagated subfields the required sampling effort is
given in Tab. 1.

Method numerical effort (sampling points)
SPW 8585 x 8585
PDT+ semi SPW 98 x 98 x (20 x 20)

Tab. 1 Sampling effort of defocused spherical wave prop-
agation

6 Conclusion

In this paper we have derived a rigorous semi-
analytical SPW propagation operator. Basically the
idea is an extraction of linear phase terms from the
conventional SPW propagation integral kernel and
its analytical handling due to the shift theorem of the
Fourier transformation. The analytical handling of
linear phase terms results in a significant reduction
of the required sampling points. It was shown by use
of an example that this semi-analytical concept al-
lows a rigorous propagation of parabasal fields with
drastically reduced numerical effort. A more detailed
description can be found in [2].
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