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This article focuses on the method to calculate the vectorial harmonic field on a
tilted plane, which is referred as the tilt operator. Knowing the field distribution on
one plane, one can find its distribution on any practically tilted plane by using tilt
operator. In this article, the application of the tilt operator is presented in the case
of the propagation of harmonic field through planar interface.

1 Introduction

Two rigorous operators will be introduced in this ar-
ticle: the tilt operator allows to calculate the field dis-
tribution on a tilted plane, which shares the origin
with the original plane; the planar interface opera-
tor allows to calculate the reflected and transmitted
field on both side of an interface with the knowl-
edge of the incident harmonic field on the interface
plane. By combining both operators, the propagation
of a harmonic field through an arbitrary interface can
be solved. Both operators are based on the idea of
plane wave decomposition. In the following sections
the fundamentals of them will be discussed.

2 Plane wave decomposition [1]

By Fourier transform, the field Vl(ρ) in spatial do-
main and field Al(κ) in spatial frequency domain (k-
domain) are related as

Vl(ρ) = F−1 [Al(κ)] , (1)

where l = 1, 2, ..., 6 represents the six components
of an electromagnetic field. Eq. (1) describes the
field on the z = 0 plane continuously. To obtain the
full field everywhere in the current coordinate system
in discretized and explicit form, we rewrite Eq. (1) in
a vectorial form as

E(r) =
M∑

m=1

N∑
n=1

1

2π
Am,ne

ikm,n·rδkx,mδky,n , (2)

with A = (A1, A2, A3)
T. By examining Eq. (2), it

can be found that only two vectors are needed to
determinate a plane wave components. For exam-
ple, plane wave component with specified index m
and n can be determined by wave vector km,n and
complex amplitude vector Am,n. Thus in this article,
a vector pair [k, A]m,n is usually used to specify a
plane wave.

3 General rotations

A physical quantity, e.g., a vector, remains itself in
different coordinate systems. In this section, we dis-
cuss the rotation of a Cartesian coordinate system.
An arbitrary rotation of a Cartesian coordinate sys-
tem can be decomposed into three basic rotations
around the three axes. For example, after an arbi-
trary rotation the original vector A becomes Ā as

Ā = Tz Tx Ty A , (3)

where the three fundamental rotation are repre-
sented by Tz, Tx and Ty.

Next we apply the rotation on a plane wave compo-
nent [k, A]m,n. Since a plane wave is fully-described
by such vector pair, one only need to apply the same
T on both km,n and Am,n to obtain the new vector
pair in the new coordinate system. The only thing
that has to be ensured is that both coordinate sys-
tems share the same origin.

4 Tilt operator

In practice we are always dealing with a beam, which
is composed by a set of plane wave components.
On x − o − y plane the beam can be sampled as
V original
l (ρ). By using fast Fourier transform (FFT)

technique its vectorial spatial spectrum can be ob-
tained as Aoriginal

l;p,q on an equidistant sampling grid.
The aim is to obtain the field distribution V tilt

l (ρ̄) on
the tilted plane. To realize that we prefer to obtain the
spatial spectrum Atilt

l;m,n first. Here Atilt
l;m,n is required

to be sampled on an equidistant grid so that FFT can
be applied.

Inspired by the idea of coordinate system rotation,
it is easy to think of applying rotation operation on
each plane wave components and compose them
in the new coordinate system. The principle works
but the nonlinearity [2] of a general rotational opera-
tion leads to a non-equidistant sampling grid finally,
which disables the use of FFT. Thus in the following
we propose a new method to avoid this.
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Starting from the tilted coordinate system, the beam
can be expressed as

Etilt(r̄) =
M∑

m=1

N∑
n=1

1

2π
Atilt

m,ne
ik̄m,n·r̄∆k̄x,m∆k̄y,n .

(4)
By setting z̄ = 0 one can see a similar form as in
Eq. (1) and components of Atilt

m,n represent the spa-
tial spectrums which are sampled on an equidistant
grid. To obtain the spectrum, we first rotate the coor-
dinate system to obtain the expression of each plane
wave component in the initial coordinate system.

km,n = T−1 k̄m,n, Arotate
m,n = T−1 Atilt

m,n . (5)

These components can be assembled as

Erotate(r) =
M∑

m=1

N∑
n=1

1

2π
∆s̄Arotate

m,n eikm,n·r , (6)

with s̄ = ∆k̄x,m∆k̄y,n. By setting z = 0 Eq. (6) be-
comes

V rotate
l (ρ) =

M∑
m=1

N∑
n=1

1

2π
∆s̄Arotate

l;m,n e
iκm,n·ρ . (7)

Because of the nonlinearity of the rotation,
(kx,m, ky,n) are no longer distributed on an equidis-
tant grid in general, while the initial spectrum
Aoriginal

l;p,q is given on an equidistant grid. To connect
both fields an interpolation of the initial spectrum is
necessary. By introducing several auxiliary points in
the sampling grid, the corresponding sampling area
around each sampling point can be determined and
the initial field can be sampled as

V original
l (ρ) =

M∑
m=1

N∑
n=1

1

2π
∆sm,nA

original
l;m,n eiκm,n·ρ .

(8)
The determination of the sampling area ∆sm,n is
shown in Fig. 1.

Fig. 1 Effect of the nonlinear rotational operation Tx on
the sampling points array in k-domain. From the tilted
plane to the initial plane (from the solid circles to the hol-
low ones), it can be found that the equidistant sampling
grid is changed into a non-equidistant one.

Since Eq. (7) and (8) describe the same field dis-
tribution in one coordinate system, they should be
identical. Thus the relation below can be found

Arotate
l;m,n = Sm,n Aoriginal

l;m,n , (9)

where Sm,n = ∆sm,n/∆s̄. The non-equidistantly
sampled spectrum Aoriginal

l;m,n can be obtained by an
interpolation of Aoriginal

l;p,q , which is sampled on an
equidistant grid. After that Arotate

l;m,n , from which we
can easily obtain Atilt

l;m,n by an inverse operation of
Eq. (5). Finally the field on the tilted plane can be
obtained by an inverse Fourier transform of Atilt

l;m,n.

5 Planar interface operator

The planar interface operator is based on Fresnel’s
equations. A general beam is first decomposed by a
set of plane wave components. For each of them, a
proper coordinate system can be found where Fres-
nel’s equations can be applied.

Let’s assume the incident field is known as a sum-
mation of plane waves [kI, AI]m,n. For each plane
wave component, the first step is to find a cer-
tain Tz;m,n with a proper rotational angle αm,n,
according to the wave vector kI

m,n. Applying of
Tz;m,n gives the wave vector and complex amplitude
[Tzk

I, TzA
I]m,n of the plane wave in its convenient

coordinate system. There the Fresnel equations are
feasible. Then the reflected and transmitted field can
be expressed as

reflected
[
Rk

{
Tzk

I
}
, RA

{
TzA

I
}]

m,n
, (10)

transmitted
[
Tk

{
Tzk

I
}
, TA

{
TzA

I
}]

m,n
. (11)

Then a Tz
−1
;m,n rotation can be used to convert them

back into the initial coordinate system.

6 Summary

Several simulations have been done with the optics
software VirtualLabTM[3]. For example, the trans-
mission and reflection at various incident angles, to-
tal internal reflection and Brewster effect. For more
details please refer to [4].
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