Integrated Hybrid GRIN Lenses

M. Hillenbrand, E. Markweg, M. Hoffmann, S. Sinzinger
IMN MacroNano®, Technische Universität Ilmenau

Concept and prototype of a wafer-level interferometer for displacement measurements.

Advantages
- Low cost by mass production (semiconductor technologies)
- High reliability
- High precision in geometric dimensions and positions (defined by lithography mask)
- Can be combined with integrated photonic elements on the same substrate
- High refractive index range

Exemplary applications
- Beam shaping for integrated laser diodes
- Efficient coupling structures between integrated optics and free space
- High transmittance

Challenges
- 2D structuring for 3D functionality
- High transmittance

Technology and experimental results

Fabrication using semiconductor technologies
- Deposition of a LPCVD film (SiO2/SiON)
- Electro-patterning of nickel structured by UV-lithography
- Fluorine-based ICP RIE deep etching
- Separation and testing of the optical elements

Achievable parameters
- Maximum height of the structures dependent on deposition time; structures with 50um GRIN layer height realized
- Realized minimum feature size: 2µm (DOE period)
- Possible refractive index range: 1.47-1.85

Achievable parameters
- Possible refractive index profile: $n(y) = n_0 + n_1|y| + n_2|y|^2 + n_3|y|^3 + \ldots$
- Realized minimum feature size: 2µm (DOE period)

Experimental setup for laser beam collimation

Beam profile at 15mm distance from the lens

Collimated

Uncollimated

1/e² 2 gaussian beam radius behind the GRIN lens

Design

Design Principle: Independent wavefront control in two perpendicular directions

Direction 1: Perpendicular to the substrate
- GRIN element, variation of the refractive index during the layer deposition process
- Description of the refractive index profile: $n(y) = n_0 + n_1|y| + n_2|y|^2 + n_3|y|^3 + \ldots$
- Element shape determined by 2D-profile of the lithographic mask

Direction 2: Parallel to the substrate
- Etching process with perpendicular, optical quality side walls

Design process
- Raytracing-based optimisation
- Simultaneous variation of the refractive or diffractive shape and the GRIN-profile
- Merit function based on the wavefront aberration of the output beam

Acknowledgements

The authors would like to thank the German Federal Ministry of Education and Research and the Thuringian Ministry for Education, Science, and Culture for the financial support through the projects "Kompetenznetzwerk Optische Mikrosysteme-AD OptiMi" (FKZ: 16SV3700) and "Graduate Research School on Optical Microsystems Technology (FZK: PE 104-1-1)."

References

Wafer-level optics

Wafer-level optics with a huge variety of shapes

Variety of diffractive and refractive shapes

variable GRIN-profile

References

Technische Universität Ilmenau
IMN MacroNano®
Fachgebiet Technische Optik
Matthias Hillenbrand

www.tu-ilmenau.de

Telefon: +49 3677 69-1276
Fax: +49 3677 69-1281
matthias.hillenbrand@tu-ilmenau.de
www.tu-ilmenau.de/optik