New improvement in calibration strategy for Strucutured-Illumination MAcroscopy

Z. Yang, S. Awel, A. Bielke, Ph. Dienstbier, E. Olesch, S. Ettl, C. Richter and G. Häusler

Institute of Optics, Information and Photonics

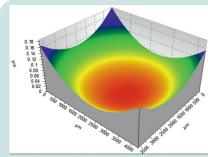
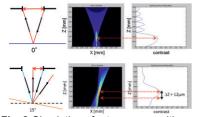



Fig. 1 Concave mirror with radius of 24mm.

With Structured-Illumination MIcroscopy (SIMI), the 3D-topography of technical surfaces can be acquired with high angular dynamics of up to ±70° in nanometer regime [1], if implemented with a high NA objective and diffraction limited PSF. We want to scale up this principle for macroscopic objects. However, for a macroscopic field, such a lens is not available for reasonable cost. As consequence, in up-scaled SIM, the unavoidable aberrations will cause lower local precision and a reduced global accuracy (retrace error). To solve these problems, we combine SIM with slope-measuring microdeflectometry [2] to achieve both an improved global accuracy and a significantly improved local precision.

SIMA & Microdeflectometry contrast (z) SIM Property SI M's focal plane A: Structured-Illumination MAcroscopy μDefl. SIMA → height measurement B: Microdeflectometry rough → slope measurement ≈ 200nr surface Features: • incoherent illumination smooth • extended depth of field surface

• extended depth of field • high angular dynamics surface | \(\frac{\delta z}{\text{-} \text{-} \text

Fig. 2 Simulation of retrace error with presence of spherical aberration.

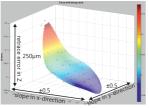


Fig. 3 Measured retrace error in Z with vertical stripe at one camara pixel.

To measure the height, SIMA compares the object shape with an **etalon** which is the **focal surface** of the objective. Unfortunately, due to the unavoidable aberrations, the shape of focal surface is **slope dependent** (Fig. 2, Fig. 3). We choose a **model-free** calibration strategy for the error correction [3].

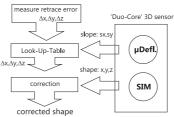


Fig. 4 Scheme of the calibration strategy for correcting retrace error.

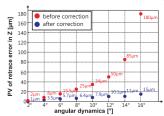


Fig. 5 PV of the retrace error measured on a sphere with a radius of 5mm before and after correction.

We rely on the **precision of photogrammetry**. By comparing the measured shape with the calculated shape from photogrammetry, we are able to generate a **field-and slope-dependent LUT** of the retrace error. After correction using this LUT, we reduced the systematic error to **less than 15µm** for an angular dynamic range of ±16°.

Improvement of local precision

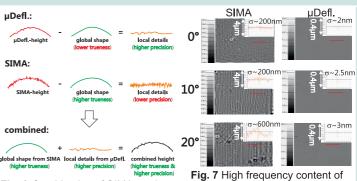


Fig. 6 Combination of SIMA- and μ Defl.-height for optimizing the local precision.

height data measured by SIMA and μ Defl. on a planar mirror, at tilting angle of 0°,10° and 20°.

In contrast to SIM, the **local precision** of microdeflectometry is **not dependent** on NA. Thanks to this feature, we can significantly optimize the local precision down to a **few nanometers**, by combining the **high frequency content** of μ Defl.-data with the **low frequeny content** of the **calibrated** SIMA-data.

- [1] Z. Yang, Ph. Dienstbier, A. Bielke and M. Vogel, Ch. Faber, G. Häusler: "Full-field macroscopic measurement of specular, curved surfaces with SIM" in DGaO-Proceeding: A6 (2011).
- [2] G. Häusler, C. Richter, K.-H. Leitz, M.C. Knauer: "Microdeflectometry a novel tool to acquire 3D microtopology with nanometer height resolution", Opt. Lett. (2008).
- [3] Z. Yang, A. Bielke, E. Olesch, Ph. Dienstbier, G. Häusler: "Measurement of optical surfaces by Structured Illumination MACROSCOPY- with correction of the retrace error" in DGaO-Proceeding: A10 (2012).

