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This article discusses different approaches to model the influence of wave aber-
rations on the modulation transfer function (MTF) by the complex pupil function.
Numerical propagation of Huygens’ elementary waves, the solution of the Fraun-
hofer approximation and a Fourier optical method are compared.

1 Introduction

When light passes through a system of optical com-
ponents, each of them will cause a certain phase
transformation depending on its form and refractive
index. The point spread function (PSF) of an optical
system may be modelled as the Fraunhofer diffrac-
tion pattern of its complex pupil function, which, in-
cluding all multiplicative phase transformations ac-
quired while passing the system, finally emerges
from the exit pupil [1, 2]. For a diffraction limited sys-
tem, the wavefront at the exit pupil is assumed to
be illuminated by a perfectly spherical wave. In the
presence of aberrations, these are modelled as ad-
ditional wavefront form errors in the complex pupil
function. The application of the complex pupil func-
tion to describe errors in the PSF is applied in [3]
in the context of image restoration. In [4], measured
edge spread functions are employed to retrieve the
Zernike coefficients of wavefront aberrations in the
complex pupil function by solving an inverse prob-
lem. In this contribution different simulation methods
are employed to demonstrate the influence of differ-
ent wavefront errors modelled by Zernike polynomi-
als on the PSF and its associated MTF. The results
will be employed in the estimation of the measure-
ment uncertainty in the multi camera MTF measure-
ment setup at PTB [5].

2 Simulation models

This section shortly introduces the different meth-
ods used to simulate the PSF or line spread function
(LSF) in dependence of the complex pupil function
of the sample under test. In the scope of this work
only rectangular apertures and detectors are consid-
ered, however all methods presented here may also
be applied to circular apertures.

Wave propagation by Huygens’ elementary waves:

Each point (x, y, z) in the x-y-aperture plane is
modelled as the source of a spherical elemen-
tary wave of amplitude A(x, y), wavelength λ and
wave vector k = 2π

λ propagating to a point
(px, py, pz) in the detector plane along the radial vec-
tor r =

√
((px − x)2 + (py − y)2 + (pz − z))2 [2]. The

electric field of the elementary waves is described
by Eq. (1), with W (x, y) being the phase distribution
associated with the wavefront aberration in the aper-
ture plane.

U =
A(x, y)

r
· e−ik(r+W (x,y)) (1)

The electric field on the detector results from the su-
perposition of all elementary waves.

Us =
∑
x

∑
y

U(x, y, px, py, pz − z) (2)

The calculation of the field on the detector with this
method is impractical for high numbers of sample
points due to its high computational load. Thus, this
method is only considered here for 1D profiles in the
aperture plane.

Analytical solution for the rectangular aperture:

For the case of a rectangular aperture of dimen-
sion wx, wy and an incoming plane wave, an analyti-
cal solution of the Fraunhofer integral exists [2]. The
diffraction limited field distribution on the detector is
given by Eq. (3).

Us =
A

λ(pz − z)
sinc(

2wxpx
λ(pz − z)

)sinc(
2wypy

λ(pz − z)
) (3)

The analytical solution may be adjusted to cover de-
focus effects, however it is not applicable for arbitrary
wavefront aberrations in the aperture plane and only
considers a homogenous and constant intensity dis-
tribution A.

Numerical solution of the Fraunhofer integral

As stated in [1], the solution of the Fraunhofer inte-
gral in the focus plane of a lens is given by Eq. (4).

Us = C
∑
x

∑
y

A(x, y)e−ik(xpx+ypy+W (x,y)) (4)

Here C describes the scaling of the amplitude. Eq.
(4) shows some similarity to Eq. (2) for the Huy-
gens’ elementary waves. It is noteworthy however,
that since the solution of Eq. (4) is confined to the fo-
cal plane of the lens its propagation along the radial
distance r is not explicitly calculated, which saves a
lot of computational effort.

Fourier optical approach

The solution of the Fraunhofer integral in the focus
plane of a lens, which represents the far field diffrac-
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tion image of the complex pupil function in the aper-
ture, may also be determined by Fourier transforma-
tion of the complex pupil function [2, 3]. The elec-
tric field in the aperture plane who’s amplitude and
phase distribution are defined by the complex pupil
function is defined in Eq. (5).

U = A(x, y)e−ikW (x,y) (5)
The lateral sampling distance in the aperture plane
dx, dy, the focal distance of the modelled lens f and
the number of samples in each direction Nx, Ny are
required to determine the correct scaling in the im-
age plane, where the diffraction pattern is observed.
The lateral spacing in the image plane is defined as

dpx =
fλ

Nxdx
, dpy =

fλ

Nydy
. (6)

The field in the image plane is calculated employing

Us =
A(x, y)

λf
|FFT (U(x, y))| . (7)

As for the numerical solution of the Fraunhofer inte-
gral, this method is also confined in its applicability
to the focal plane of the lens.

Since the intensity is proportional to the square of
the electric field, the results of Eq. (2), (3), (4) and
(7) are squared to determine the intensity distribu-
tion in the image plane.

3 Results and conclusions

To test and compare the different approaches,
the diffraction image of a spherical lens with focal
length f = 50mm and quadratic aperture diam-
eter D = 5mm is considered at a wavelength of
λ = 546 nm. In the case of a plane input wave-
front all simulation methods yield similar results.
The numerical methods show a higher deviation to
the diffraction limited MTF than the FFT method
due to their low number of sampling points in the
aperture plane, which is used to decrease simu-
lation time. To get an impression of the impact of
wavefront errors on the MTF a trefoil error has been
added to the plane input wavefront by setting the
Zernike coefficient Z3

3 = −2 · 10−6 mm. The MTF
deviations caused by the trefoil as predicted by the
different simulation methods are depicted in Fig.
1. The analytical model (blue diamonds) does not
incorporate the wavefront aberration. The 1D ap-
proaches (orange crosses and yellow circles) only
consider a cut through the input aperture and do
not correctly represent the influence of the trefoil
error on the MTF. The LSF approaches (solid vio-
lett line and dashed green line) are based on a 2D
modelling of the wavefront aberration and yield the
best representation of the MTF deviation caused by
the trefoil error. The difference between the Fraun-
hofer (solid violet line) and the FFT (dashed green
line) approach is caused by the rather low spatial
resolution employed in the numerical solution of
the Fraunhofer integral. Increased resolution causes
these results to converge but greatly increases the

computation time. In conclusion the Fourier optical
approach of Fourier transforming the complex pupil
function to yield the diffraction pattern is the fastest
implementation and yields the best result since it
allows higher resolution in the spatial sampling.
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Fig. 1 Difference between the ideal diffraction limited MTF
and the MTF obtained for the wavefront with peak to valley
trefoil error of 400 nm.

To get a better understanding and hands-on ex-
perience with the influence of wavefront errors on
the MTF the reader is referred to our simula-
tion data which is provided open access via the
PTB’s open access repository under the citable DOI:
10.7795/710.20230628 [6]. The software allows to
simulate and evaluate arbitrary wavefront error com-
binations based on Zernike polynomials for rectan-
gular aperture planes.
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